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Life begins with nucleic acids
There are five heterocyclic bases in DNA and RNA

purnine bases in nucleic acids pyrimidine bases in nucleic acids
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e There are only two purine bases found in nucleic acids: adenine (A), which we have
already met, and guanine (G)

® The three pyrimidine bases are simpler: uracil (U), thymine (T), and cytosine (C).
Cytosine is found in DNA and RNA, uracil in RNA only, and thymine in DNA only.
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The stimulants in tea and coffee are methylated purines
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Nucleic acids exist in a double helix
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HIV and AIDS are treated with modified nucleosides
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Cyclic nucleosides and stereochemistry
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Proteins are made of amino acids
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Amino acids combine to form peptides and proteins
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Antiobiotics exploit the special chemistry of bacteria
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Drugs based on peptides or peptidomimetics
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Sugars—just energy sources?

Sugars normally exist in cyclic forms with much stereochemistry

two representations of glucose ribose a ribonucleotide
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Sugars can be fixed in one shape by acetal formation
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Glycosides in nature
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Glycosides in nature
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Vitamin C is a derivative of glucose

Nature makes some important compounds from simple sugars. Vitamin C—ascorbic acid—is one of these. It certainly
looks very like a sugar as it has six carbon atoms, each having an oxygen atom as substituent as well as an oxygen
heterocyde. Like glutathione, it protects cells from stray oxidants as well as being involved in primary redox pathways
(we mentioned earlier its role in collagen synthesis). Its reduced and oxidized forms are shown below.
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Most sugars are embedded in complex

carbohydrates
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Amino sugars add versatility to saccharides
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Lipids
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Mechanisms in biological chemistry

Nature’s NaBH, is a nucleotide: NADH or NADPH
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Nature’s NaBH, is a nucleotide: NADH or NADPH
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Reductive amination in nature

reductive amination in the laboratory
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Nature’s enolate equivalents: lysine enamines and coenzyme A
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Nature’s enolate equivalents: lysine enamines and coenzyme A
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Phosphoenolpyruvate
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The shikimic acid pathway
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Solanaceae alkaloids

The Solanaceae family indudes not only deadly
nightshade (Afropa belladonna—hence atro-
pine) plants but also potatoes and tomatoes.
Parts of these plants also contain toxic alkaloids,
for example you should not eat green potatoes
because they contain the toxic alkaloid solanine.

the very toxic alkaloid
solanine, a mixture of
glycosides with R =

glucose, mannose, etc.

Atropine is a racemic compound but the
(S)-enantiomer occurs in henbane (Hyosgyamus
niger) and was given a different name, hyoscya-
mine, before the structures were known. In fact,
hyoscyamine racemizes very easily just on heat-
ing in water or on treatment with weak base.
This is probably what happens in the deadly
nightshade plant.
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Pyrrolidine alkaloids are made from the amino acid ornithine
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Pyrrolidine alkaloids are made from the amino acid ornithine
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Robinson’s tropinone synthesis

This complex route to tropinone was imitated as long ago as 1917 in one of the most celebrated reactions of all time,
Robinson’s tropinone synthesis. Robinson argued on purely chemical grounds that the sequence of imine salts and enols,
which later (as shown in 1970) turned out to be nature’s route, could be produced under "natural’ conditions (aqueous

solution at pH 7) from a C, dialdehyde, MeNH,, and acetone dicarboxylic acid. It worked and the intermediates must be
very similar to those in the biosynthesis.
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Benzyl isoquinoline alkaloids are made from tyrosine
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Benzyl isoquinoline alkaloids are made from tyrosine
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As with tropinone, it is possible to make benzyl isoquinoline alkaloids very simply under mild conditions in the laboratory,
providing that we use an aldehyde as the carbonyl component. The reaction (sometimes known as the Pictet-Spengler
reaction) gives a reduced heterocydic ring, as does the biosynthesis, but chemical oxidation can be used to give the

isoquinoline.
HO. HO
- omﬂz pH6E O NH
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— - HO
The mechanism is straightforward—the imine is formed and will be protonated at pH 6, ready for the C—C bond forma-

CHO 25°C, water
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o
tion, which is both a Mannich reaction and an electrophilic aromatic substitution.
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Notice that it was not necessary to protect the OH groups—the acetal on the lower ring is not for protection, and this
group (methylenedioxy or dioxolane) is present in many benzyl isoquinoline alkaloids. It is formed in nature by oxidation
of an MeO group artho to an OH group on a benzene ring.



Fatty acids and other polyketides are made from acetyl CoA

saturated fatty acids . .
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Fatty acids and other polyketides are made from acetyl CoA
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What is so important about unsaturated fatty acids?

biosynthesis of unsaturated fatty acids
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Aromatic polyketides
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Terpenes are volatile constituents of plants
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Terpenes are volatile constituents of plants
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The steroids are another group of compounds derived from mevalonic acid. They
include sex hormones such as testosterone and progesterone, and the cholesterol
needed to build cell membranes but also implicated in the damage to arteries
caused by atherosclerosis.

testosterone



